Atmospheric black carbon: Chemistry and optical properties

The direct climate impacts - the absorption and scattering of light - of black carbon (soot) particles are thought to be impacted by atmospheric processing, though this is highly uncertain at present. Using flow-tube and chamber techniques to age black carbon (via heterogeneous oxidation and/or the addition of secondary aerosol coatings), combined with state-of-the-art measurements of the chemical and optical properties of the particles, we hope to better understand how the climate-relevant properties of these particles evolve during their atmospheric lifetimes. This work is done in collaboration with Colette Heald (MIT) and Paul Davidovits (Boston College).